| Grid carbon intensity is high; please do not run big appliances such as a dishwasher or washing machine now if you can postpone |
|---|
You might have saved as much as 33% carbon emissions by choosing the best time to run your washing and other major loads.
Latest data is from Sat Feb 14 11:55:00 UTC 2026. This page should be updated every few minutes: use your browser's refresh/reload button if you need to check again.
Follow this grid status on Mastodon @EarthOrgUK@mastodon.energy.
This free service is in BETA and may be unavailable or withdrawn at any time and is provided "as-is" with no warranties of any kind.
This page shows the current "carbon intensity" of the GB National Grid (ie the England/Scotland/Wales portions of the UK electricity grid) as a simple traffic-light indicator. Carbon intensity is a measure of how much greenhouse gas (especially CO2 or carbon dioxide) is emitted to generate a fixed amount of electricity.
Anything other than a GREEN light suggests that you should consider deferring heavy loads (eg starting a dishwasher or washing-machine at home) because the carbon intensity is relatively high, or because of other factors. Avoiding running major appliances such as washing/heating/cooking during RED times will save CO2 emissions.
You should still conserve first: don't run things that don't need to be run at all, don't leave things on that can be turned off at the wall, run full loads in your washing machine and dishwasher, etc, etc, before worrying about carbon intensity.
Planning ahead: note that in the UK/GB peak demand for electricity will usually be 4pm to 10pm especially on week days in winter (and a lesser peak around 8am to 11am), and peak carbon intensity is often around peak demand, so try to avoid big loads then; if possible run loads such as your dishwasher and washing machine overnight, eg on a delay timer or just as you go to bed, or when you have local microgeneration that can cover much/all of the load.
There are various arguments about whether this marginal cost calculation reflects reality, ie in practice is there simply a gas turbine somewhere that gets spun up a little if you demand extra power. There is much less argument about the value of lowering demand generally, and about lowering peak demand on various parts of the infrastructure.
Shifting loads to the night when energy is going into grid-scale storage such as pumped hydro, avoids pulling it out when you would otherwise run/dispatch the load, and thus saves round-trip losses of ~25% for that load.
You don't need to understand the numbers below, but some people like to see them!
Effective grid carbon intensity for a domestic user is currently 250gCO2/kWh including transmission and distribution losses of 7%.
Latest available grid generation carbon intensity (ignoring transmission/distribution losses) is approximately 234gCO2/kWh at Sat Feb 14 11:55:00 UTC 2026 over 31352MW of generation, with a rolling average over 24h of 201gCO2/kWh.
Minimum grid generation carbon intensity (ignoring transmission/distribution losses) was approximately 159gCO2/kWh at Sat Feb 14 00:25:00 UTC 2026.
Maximum grid generation carbon intensity (ignoring transmission/distribution losses) was approximately 235gCO2/kWh at Sat Feb 14 11:20:00 UTC 2026.
Average/mean grid generation carbon intensity (ignoring transmission/distribution losses) was approximately 201gCO2/kWh over the sample data set, with an effective end-user intensity including transmission and distribution losses of 215gCO2/kWh.
| Recent mean GMT hourly generation intensity gCO2/kWh (average=201); *now (=234) | |||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12* |
| Mean GMT hourly generation GW (all, zero-carbon) | |||||||||||||||||||||||
Current/latest fuel mix at Sat Feb 14 11:55:00 UTC 2026: BIOMASS@2480MW CCGT@16788MW COAL@0MW INTELEC@997MW INTEW@0MW INTFR@1503MW INTGRNL@0MW INTIFA2@992MW INTIRL@0MW INTNED@952MW INTNEM@659MW INTNSL@0MW INTVKL@0MW NPSHYD@293MW NUCLEAR@3853MW OCGT@8MW OIL@0MW OTHER@331MW PS@0MW WIND@2496MW.
Generation by fuel category (may overlap):
Overall generation intensity (kgCO2/kWh) computed using the following fuel year-2026 intensities (other fuels/sources are ignored): BIOMASS=0.12 CCGT=0.394 COAL=0.937 INTELEC=0.018 INTEW=0.322 INTFR=0.018 INTGRNL=0.322 INTIFA2=0.018 INTIRL=0.322 INTNED=0.199 INTNEM=0.105 INTNSL=0.009 INTVKL=0.075 NPSHYD=0.0 NUCLEAR=0.0 OCGT=0.651 OIL=0.935 OTHER=0.3 WIND=0.0.
Rolling correlation of fuel use against grid intensity (-ve implies that this fuel reduces grid intensity for non-callable sources): BIOMASS=-0.0955 CCGT=0.7970 INTELEC=-0.4319 INTFR=-0.4474 INTIFA2=-0.4795 INTIRL=0.0942 INTNED=0.1669 INTNEM=-0.3411 NPSHYD=0.7784 NUCLEAR=-0.0386 OCGT=0.4682 OTHER=0.5349 WIND=-0.3239.
Key to fuel codes:
(Histogram input windows: 24h, 168h.)
This estimates the carbon intensity of generation connected to the National Grid GB (Great Britain) high-voltage transmission system, ignoring (pumped) storage and exports but including imports via interconnectors. This excludes 'embedded' generation, eg connected directly to the distribution system, such as small diesels, domestic microgeneration and a significant chunk of wind power, all of which also benefits from reduced transmission/distribution losses, so actual intensity may be somewhat different to (and probably lower than) that reported. However the emissions cost of each marginal/conserved kWh is probably accurately reflected.
(Colours are wrt the last 24h of data.)
This page updated at Sat Feb 14 12:01:07 UTC 2026; generation time 5234ms.
See also:
Poll every 10 minutes for 404 HTTP status code (404 means green, 200 means not green, anything else is 'unknown' status due to server/network/other problems) for automated systems:
Please email me if you use this mechanism, to be alerted to changes.
This free service may be unavailable or withdrawn at any time and is provided "as-is" with no warranties of any kind.
Some data used to generate this page is licensed from ELEXON.
Copyright © Damon Hart-Davis 2010–2026. [home]