

This As Built submission has been carried out by an Authorised SAP Assessor. The Assessor has confirmed any changes from the Design Submission with the builder.

Assessor Name Mr Martin Gill (OCDEA) Assessor Number 1756

Client

2. Ventilation rate

Date Last Modified 30/03/2009

Address 16 Willingham Way, Kingston Upon Thames, Surrey, KT1 3JA

1. Overall dwelling dimensions Area (m²) Average storey Volume height (m) (m^3) Ground Floor (1a) (1) 38.24 2.34 89.48 First Floor (2a)(2) 38.34 2.65 101.60 Total floor area (1a)+(2a)+(3a)+(4a)+(4b)+(4d)+(4f)+(4h) =76.58 191.08 Dwelling volume (6)(1)+(2)+(3)+(4)+(4c)+(4e)+(4g)+(4i) =

			m³ per hour
Number of chimneys	0	× 40 =	0 (7)
Number of open flues	0	× 20 =	0 (8)
Number of intermittent fans or passive vents	2	× 10 =	20 (9)

Number of flueless gas fires $0 \times 40 = 0$ (9a)

Infiltration due to chimneys, flues and fans = (7)+(8)+(9)+(9a)= 20 \div box (6)= 0.10 (10)

If a pressurisation test has been carried out, proceed to box(19)

Number of storeys in the dwelling

Additional infiltration $[(11) - 1] \times 0.1 = N/A (12)$

2

(11)

Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction

N/A

(13)

If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0 N/A (14)

If no draught lobby, enter 0.05, else enter 0 N/A (15)

Percentage of windows and doors draught stripped N/A (16)

Enter 100 in box (16) for new dwellings which are to comply with Building Regulations

Window infiltration $0.25 - [0.2 \times (16) \div 100] = N/A$ (17)

If based on air permeability value, then $[q_{50} \div 20] + (10)$ in box (19), otherwise (19) = (18)

Air permeability value applies if a pressurisation test has been done or the design air permeability is being used

Number of sides on which sheltered 1 (20)

(Enter 2 in box (20) for new dwellings where location is not shown)

Submission Reference Number:

NB-NES-00001756-09033023051200

SAP

URN: ED1029 V: 3 Plan Assessor V: 4.2.28

Date Last Modified 30/03/2009

Mr Martin Gill (OCDEA) **Assessor Number** 1756 **Assessor Name**

Shelter factor 0.93 $1 - [0.075 \times (20)] =$ (21)

0.43 Adjusted infiltration rate (22) $(19) \times (21) =$

Calculate effective air change rate for the applicable case

If balanced whole house mechanical ventilation system air throughput (ach) = N/A (22a)

If balanced with heat recovery efficiency in % allowing for in-use factor = N/A (22b)

 $(22) + (22a) \times [1 - (22b) / 100] =$ a) If balanced whole house mechanical ventilation with heat recovery N/A (23)

(22) + (22a) =b) If balanced whole house mechanical ventilation without heat recovery N/A (23a)

c) If whole house extract ventilation or positive input ventilation from outside N/A (23b)if (22) < 0.25, then (23b) = 0.5; otherwise (23b) = 0.25 + (22)

d) If natural ventilation or whole house positive input ventilation from loft

0.59 (24)if $(22) \ge 1$, then (24) = (22); otherwise $(24) = 0.5 + [(22)^2 \times 0.5]$

Effective air change rate - enter (23) or (23a) or (23b) or (24) in box (25)

3. Heat losses and heat loss parameter

ELEMENT	Area (m²)		U - value		AXU (W/K)	
Windows *	11.53	×	2.44	=	28.09	(27)
Doors	1.72	×	3.90	=	6.72	(26)
Windows *	1.27	×	4.03	=	5.10	(27)
Ground Floor	38.24	×	0.79	=	30.21	(28)
Walls	73.10	×	0.80	=	58.48	(29)
Roof	38.24	×	0.15	=	5.74	(30)
Total area of elements ΣA , m^2	164.10	(32)		•		

st for windows and rooflights, use effective window U-value calculated as given in paragraph 3.2

(33)Fabric heat loss, W/K (26)+(27)+(27a)+(27b)+(28)+(29)+(29a)+(30)+(30a)+(31) =134.34

Thermal bridges - Σ (lx Ψ) calculated using Appendix K

if details of thermal bridging are not known calculate $y \times (32)$ [see Appendix K] and enter in box (34)

158.96 (33)+(34) =(35)Total fabric heat loss

 $(25) \times 0.33 \times (6) =$ 37.45 (36)Ventilation heat loss

196.41

(35)+(36) =(37)Heat loss coefficient, W/K

 $(37) \div (5) =$ 2.56 (38)Heat loss parameter (HLP), W/m²K

4. Water heating energy requirement kWh/year

1801.22 Energy content of hot water used from Table 1 column (b) (39)

Distribution loss from Table 1 column (c) 317.86 (40)If instantaneous water heating at point of use, enter "0" in boxes (40) to (45)

For community heating use Table 1 (c) whether or not hot water tank is present

Water storage loss:

a) If manufacturer's declared loss factor is known (kWh/day):

(41a)

Temperature factor from Table 2b N/A

FS 25719

Submission Reference Number:

NB-NES-00001756-09033023051200

(41)

N/A

0.59

24.62

(34)

(25)

Date Last Modified 30/03/2009

Assessor Number 1756

Mr Martin Gill (OCDEA) **Assessor Name**

Energy lost from water storage, kWh/year

N/A $(41)\times(41a)\times365 =$ (42)

b) If manufacturer's declared cylinder loss factor is not known:

Cylinder volume (litres) including any solar storage within same cylinder

N/A (43)

If community heating and no tank in dwelling, enter 110 litres in box (43)

Otherwise, if no stored hot water (this includes instantaneous combi boilers), enter '0' in box (43)

0.00 (44)

Hot water storage loss factor from Table 2 (kWh/litre/day)

If community heating and no tank in dwelling, use cylinder loss from Table 2 for 50 mm factory insulation in box (44)

0.00

Volume factor from Table 2a

Temperature factor from Table 2b

0.00 (44b)

(44a)

Energy lost from water storage, kWh/year

0.00 (45)

Enter (42) or (45) in box (46)

0.00 (46)

If cylinder contains dedicated solar storage, box $(47) = (46) \times [(43) - (H11)] / (43)$, else (47) = (46)

0.00 (47)

Primary circuit loss from Table 3

(48)0.00

Combi loss from Table 3a (enter "0" if no combi boiler)

596.62 (49)

Solar DHW input calculated using Appendix H (enter "0" if no solar collector)

0.00 (50)

Output from water heater, kWh/year

(39)+(40)+(47)+(48)+(49)-(50) =

 $(43)\times(44)\times(44a)\times(44b)\times365 =$

2715.70 (51)

Heat gains from water heating

 $0.25 \times [(39)+(49)]+0.8 \times [(40)+(47)+(48)] =$ include (47) in calculation of (52) only if cylinder is in the dwelling or hot water is from community heating 853.75 (52)

5. Internal gains

Lights, appliances, cooking and metabolic (Table 5)

Watts

Reduction of internal gains due to low energy lighting (calculated in Appendix L)

463.24 (53)53.42

(53a)

Additional gains from Table 5a

10.00 (53b)

Water heating

 $(52) \div 8.76 =$

97.46 (54)

Total internal gains

(53) + (53b) + (54) - (53a) =

517.28

6. Solar gains

	Access factor Table 6d		Area m²		Flux Table 6a		g Table 6b		FF Table 6c		Gains (W)	
West	0.77	×	7.67	×	48.00	x 0.9 x	0.76	×	0.70	=	135.67	(57)
East	0.77	×	3.86	×	48.00	x 0.9 x	0.76	×	0.70	=	68.36	(59)
East	0.77	×	1.27	×	48.00	x 0.9 x	0.85	×	0.40	=	14.33	(59)

Total solar gains:

Total gains, W

$$[(56) + \dots + (64)] = 218.36$$

Note: for new dwellings where overshading is not known, the solar access factor is '0.77'

(55) + (65) =735.64

Submission Reference Number:

NB-NES-00001756-09033023051200

(65)

Date Last Modified 30/03/2009

Mr Martin Gill (OCDEA) **Assessor Number** 1756 **Assessor Name**

Gain/loss ratio (GLR) $(66) \div (37) =$ 3.75 (67)

Utilisation factor (Table 7, using GLR in box (67)) 0.99 (68)

Useful gains, W 729.62 (69) $(66) \times (68) =$

7. Mean internal temperature ° C

Mean internal temperature of the living area (Table 8) 18.80 (70)0.00 Temperature adjustment from Table 4e, where appropriate (71)

Adjustment for gains $\{[(69) \div (37)] - 4.0\} \times 0.2 \times R =$ -0.06(72)R is obtained from the 'responsiveness' column of Table 4a or Table 4d

18.74 (70) + (71) + (72) =(73)Adjusted living room temperature

Living area fraction (0 to 1.0) 0.20 living room area \div (5) = (75)

Rest-of-house fraction 1 - (75) =0.80 (76)

17.42 Mean internal temperature $(73) - [(74) \times (76)] =$ (77)

8. Degree days

3.71 Temperature rise from gains $(69) \div (37) =$ (78)

Base temperature (77) - (78) =13.70 (79)

Degree-days, use box (79) and Table 10 (80)1714.33

9. Space heating requirements

Temperature difference between zones (Table 9)

Space heating requirement (useful), kWh/year $0.024 \times (80) \times (37) =$ 8081.14 (81)

For range cooker boilers where efficiency is obtained from the Boiler Efficiency Database or manufacturer's declared value, multiply the result in box (81) by (1 - Φ case/ Φ water) where Φ case is the heat emission from the case of the range cooker at fullload (in kW); and Φ water is the heat transferred to water at full load (in kW). Φ case and Φ water are obtained from the database record for the range cooker boiler or manufacturer's declared value.

9a. Energy requirements - individual heating systems, including micro-CHP

Note: when space and water heating is provided by community heating use the alternative worksheet 9b

Space heating:

Fraction of heat from secondary/supplementary system (use value from Table 11, Table 12a or Appendix F)

0.00 (82)

1.66

(74)

Efficiency of main heating system, %

78.60 (83)

(84)

(SEDBUK or from Table 4a or 4b, adjusted where appropriate by the amount shown in the 'efficiency adjustment' column of Table 4c)

Efficiency of secondary/supplementary heating system, % (use value from Table 4a or Appendix E) 0.00

10281.35

Space heating fuel (main) requirement, kWh/year $[1-(82)] \times (81) \times 100 \div (83) =$ (85)

N/A Space heating fuel (secondary), kWh/year $(82) \times (81) \times 100 \div (84) =$ (85a)

Water heating:

Submission Reference Number:

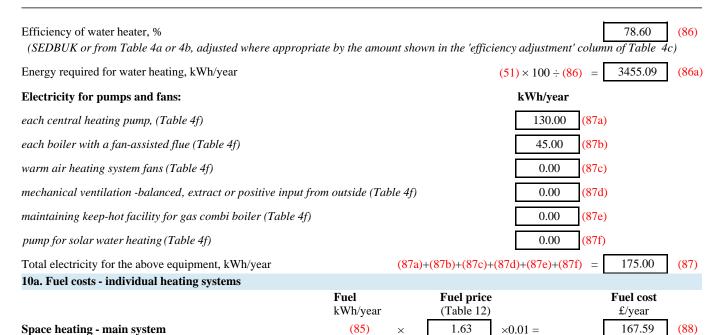
NB-NES-00001756-09033023051200

URN: ED1029 V: 3 Plan Assessor V: 4.2.28

Date Last Modified 30/03/2009

N/A

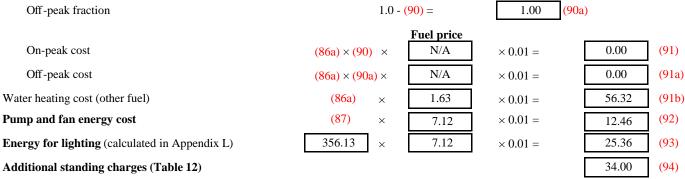
 $\times 0.01 =$


0.00

(90)

0.00

(89)


Mr Martin Gill (OCDEA) 1756 **Assessor Number Assessor Name**

Water heating

Space heating - secondary

Water heating cost (electric, off-peak tariff)

(85a)

Re

On-peak fraction (Table 13, or Appendix F for electric CPSUs)

PV			
Energy produced or saved, kWh/year	2743.06 (95)		
Cost of energy produced or saved, £/year	(95) × 6.41	× 0.01 =	175.83 (95a)
Wind			
Energy produced or saved, kWh/year	0.00 (95b1)		
Cost of energy produced or saved, £/year	(95b1) × 0.00	× 0.01 =	N/A (95b)
Micro CHP			
Energy produced or saved, kWh/year	N/A (95c1)		
Cost of energy produced or saved, £/year	(95c1) × N/A	$\times 0.01 =$	N/A (95c)

Submission Reference Number:

Date Last Modified 30/03/2009

1756 **Assessor Number**

Mr Martin Gill (OCDEA) **Assessor Name**

Energy consumed by the technology, kWh/year

N/A (96)(96)

(s1)

(88)+(89)+(91)+(91a)+(91b)+(92)+(93)+(94)-(95a)-(95b)-(95c)+(96a)-(s1a)+(s2a) =

N/A

×0.01 =

N/A (96a)

Special features (Appendix Q)

Cost of energy consumed, £/year

Energy produced or saved, kWh/year Cost of energy produced or saved, £/year

Energy consumed by the technology, kWh/year

N/A (s2) (s2)

N/A

(s1)

N/A

 $\times 0.01 =$

N/A (s1a)

Cost of energy consumed, £/year

N/A

×0.01 =

N/A (s2a)

Total energy cost 11a. SAP rating - individual heating systems

Energy cost deflator (SAP 2005)

Energy cost factor (ECF)

 $\{[(97) \times (98)] - 30.0\} \div \{(5) + 45.0\} =$

0.91 (98)

(97)

(99)

SAP rating (Table 14)

SAP band

0.65 91 (100)В

119.89

12a. Carbon dioxide emissions rate for individual heating systems (including micro-CHP) and community heating without CHP

Individual heating system:	Energy kWh/year		nission factor g CO2/kWh		Emissions kgCO ₂ /year	
Space heating main from box (85)	10281.35	×	0.194	=	1994.58	(101)
Space heating secondary from box (85a)	N/A	×	N/A	=	0.00	(102)
Energy for water heating from box (86a)	3455.09	×	0.194	=	670.29	(103)
Energy for water heating (51) or [(87b*) \times 100 \div (104)] =	= N/A	×	N/A	=	N/A	(106)
Space and water heating	[(101) + (102) +	(103)] o	r [(105) + (106	5)] =	2664.87	(107)
Energy for water heating (Type 1 fraction) × $(87*) \times 100 \div (104a)$ =	N/A	×	N/A	=	N/A	(106a)
Energy for water heating (Type 2 fraction) × (87*) × 100 \div (104b) =	N/A	×	0.000	=	N/A	(106b)
Space and water heating	[(105a) + (106a)	+ (105b)	+ (106b)] =		2664.87	(107)
Electricity for pumps and fans from box (87) or (88*)	175.00	×	0.422	=	73.85	(108)
Energy for lighting from Appendix L	356.13	×	0.422	=	150.29	(109)
Energy produced or saved in dwelling (Appendices M and N)						
PV energy produced or saved (95) or	(95*)	×	0.57	=	1558.06	(110)
Wind energy produced or saved (95b1) or (95b1)	5b1*)	×	N/A	=	N/A	(110b)
Micro-CHP energy produced or saved (95c1) or (95c1)	5c1*)	×	N/A	=	N/A	(110c)
Micro-CHP energy consumed (96) or ((96*)	×	N/A	=	0.00	(111)

Submission Reference Number:

NB-NES-00001756-09033023051200

SAP Worksheet (Version - 9.81)

В

Date Last Modified 30/03/2009

Assessor Name Mr Martin Gill (OCDEA) Assessor Number 1756

Energy produced or saved in dwelling (Appendix Q) (s1) or (s1*) \times N/A = 0.00 (s1a)

Energy consumed by the technology (Appendix Q) (s2) or (s2*) \times N/A = 0.00 (s2a) Total CO₂ kg/year (107) + (108) + (109) - (110) + (111) - (s1a) + (s2a) = 1330.95 (112)

Carbon dioxide emissions rate $(112) \div (5) = 17.38$ (113)

EI rating 85

EI band

13a. Primary energy, for individual heating systems (including micro-CHP) and community heating without CHP

T. 3'-13 -11 - 4' 4		Energy kWh/year		Primary energy factor		Primary energy (kWh/year)
Individual heating system:	K VV II/ y Cal		Tactor		(KWII/year)	
Space heating main from box (85)		10281.35	×	1.150	=	11823.55
Space heating secondary from b	oox (85a)	N/A	×	N/A	=	0.00
Energy for water heating from b	oox (86a)	3455.09	×	1.150	=	3973.35
Energy for water heating	$(87b^*) \times 100 \div (104) =$	N/A	×	N/A	=	N/A
Space and water heating						15796.90
Energy for water heating	(Type 1 fraction) \times (87*) \times 100 \div (104a) =	N/A	×	N/A	=	N/A
Energy for water heating	(Type 2 fraction) \times (87*) \times 100 \div (104b)	N/A	×	N/A	=	N/A
Space and water heating					=	15796.90
Electricity for pumps and fans from box (87) or (88*)		175.00	×	2.800	=	490.00
Energy for lighting from Appendix L		356.13	×	2.800	=	997.16
Energy produced or saved in dv	velling (Appendices M and N)					
PV energy produced or saved		(95) or (95*)	×	2.80	=	7680.56
Wind energy produced or saved		(95b1) or (95b1*)	×	N/A	=	N/A
Micro-CHP energy produced or saved		(95c1) or (95c1*)	×	N/A	=	N/A
Micro-CHP energy consumed		(96) or (96*)	×	N/A	=	0.00
Energy produced or saved in dwelling (Appendix Q)		(s1) or (s1*)	×	N/A	=	0.00
Energy consumed by the above technology (Appendix Q)		(s2) or (s2*)	×	N/A	=	0.00
Primary energy kWh/year						9603.51
Primary energy kWh/m²/year						125.40

Submission Reference Number:

Date Last Modified 30/03/2009

Assessor Name Mr Martin Gill (OCDEA) Assessor Number 1756

N/A Space heating from CHP or recovered/geothermal heat, box (86*) box (107*)=N/A N/A Space heating from boilers $(87*) \times 100 \div (109*) =$ N/A N/A Table 12 = -1.00 Electricity for pumps and fans, box (88*) N/A N/A Table 12 = N/A [(108*) + (110*) + ... + (114*)] =-1.00 Total PE associated with boilers, CHP or recovered/geothermal heat If negative, enter "0" in box (115*) Table 12 = 997.16 Energy for lighting from Appendix L 356.13 2.80

Energy produced or saved in dwelling (Appendix M)

PV energy produced or saved (95*) \times 2.80 Table 12 = 7680.56

Wind energy produced or saved (95b1*) \times N/A Table 12 = N/A

Submission Reference Number:

Appendix M (Energy from PV and Wind): As Built - Final

This As Built submission has been carried out by an Authorised SAP Assessor. The Assessor has confirmed any changes from the Design Submission with the builder.

Assessor Name Mr Martin Gill (OCDEA) Assessor Number 1756

Client

Date Last Modified 30/03/2009

Address 16 Willingham Way, Kingston Upon Thames, Surrey, KT1 3JA

M1 - Electricity produced by PV

 $0.80 \times kWp \times S \times Z_{pv} =$

used in box (95a) in main SAP worksheet

2743.06

Where

S = annual solar radiation from Table H2

886

kWh/m²

kWh/year

Z_{nv} = overshading factor from Table H3

3.870

kWp

Installed peak power of the PV unit (kWp)

Output of module under radiation of 1 kW/m² at 25°C

Fuel Price - cost of energy produced or saved by PV

 $[\beta \times \text{normal electricity price}] + [(1 - \beta) \times \text{exported electricity price}]$

 $[0.5 \times 7.12] + [(0.5) \times 5.70] = 6.41$ p/kWh

Where

used in the calculation of box (95a) in main SAP worksheet

 $\beta = 0.50$ (for all PV related SAP 2005-9.8 lcalculations)

Proportion of generated electricity that is used directly within the dwelling

CO₂ emissions saved by PV

Emission factor for grid-displaced electricity from Table 12

kg CO, per kWh

Energy produced or saved in dwelling - used in box (110) on main worksheet

0.568

NB the same factor is used for all electricity generated, whether used within the dwelling or exported.

Submission Reference Number:

NB-NES-00001756-09033023051200

Plan Assessor V: 4.2.28 SAP Worksheet (Version - 9.81)

Appendix M (Energy from PV and Wind): As Built - Final

Date Last Modified 30/03/2009

Assessor Name Mr Martin Gill (OCDEA) Assessor Number 1756

M2 - Electricity Produced by wind turbines

 $E_{\text{wind}} = N_{\text{turbines}} \times 0.24 \times 0.25 \times \text{pi x (Rotor Diameter)}^2 \times 0.6125 \times (\text{Average Wind Speed x Correction factor})^3 \times 1.9 \times 8766 \times 0.001$

kWh/year

= N/A

used in box (95b) in main SAP worksheet

Where

 $N_{\text{turbines}} = \text{Number of wind turbines} = N/A$

1.9 = Wind speed variation function

8766 = Average number of hours per year

Fuel Price - cost of energy produced or saved by wind turbines

[$\beta \times \text{normal electricity price}$] + [$(1 - \beta) \times \text{exported electricity price}$]

 $[0.7 \times N/A] + [(0.3) \times N/A] = N/A$ p/kWh

Where

used in the calculation of box (95a) in main SAP worksheet

 $\beta = 0.70$ (for all wind turbines related SAP 2005-9.81 calculations)

Proportion of generated electricity that is used directly within the dwelling

CO₂ emissions saved by wind turbines

Emission factor for grid-displaced electricity from Table 12

kg CO2 per kWh

Energy produced or saved in dwelling - used in box (110) on main worksheet

N/A

NB the same factor is used for all electricity generated, whether used within the dwelling or exported.

Submission Reference Number:

NB-NES-00001756-09033023051200

Plan Assessor V: 4.2.28 SAP Worksheet (Version - 9.81)

This As Built submission has been carried out by an Authorised SAP Assessor. The Assessor has confirmed any changes from the Design Submission with the builder.

Assessor Name Mr Martin Gill (OCDEA) **Assessor Number** 1756

Client

Date Last Modified 30/03/2009

Address 16 Willingham Way, Kingston Upon Thames, Surrey, KT1 3JA

Property type: House

Built form: End terrace

Flat type: N/A Year built: 1968 Region: **Thames** Number of sheltered sides:

Terrain: Low rise U/S

Storevs:

Name **Basement** Height **Area** 38.24 m² 2.34 m Lowest floor No +1 No 38.34 m² 2.65 m

> Living room area = 15.30 m² 0.20 Area Fraction =

Floors:

Name Construction Sealed Zone 1 **U-value** Type Area Ground N/A 15.30 m² 0.79 W/m²K Floor 1 Solid ground floor 38.24 m²

Walls:

Name Construction **Basement** Area **U-value** Wall 1 Timber No basement present 87.62 m² 0.80 W/m2K

Roofs:

Construction Name Area Zone1 Area **U-value** Roof 1 Pitched (joists) 38.24 m² $0.00\,m^2$ 0.15 W/m2K

Opening Ref: 1

Type Window Master: No From source: Table 6x (SAP 2005) Linked to: 0 **Description:** kitchen Location name: Wall 1

u-PVC Frame: Width: 1.48 m Transmittance: 0.76 1.08 m 0.70 Thermal break: Height: Fraction glazed: 2.70 W/m²K

Draught proofing: Loose seal Area: 1.60 m² U-value:

Metal lintel: No Overhang depth: 0.00 m Double 0.00 m Glazing Type: Overhang width: No **Argon Filled:**

Gap: 16mm or more

Orientation: East

Overshading: Average / Unknown

Submission Reference Number:

NB-NES-00001756-09033023051200

URN: ED1029 V: 3

FS 25719 Page 1 of 6

Plan Assessor V: 4.2.28 SAP Worksheet (Version - 9.81)

Date Last Modified 30/03/2009

U-value:

Mr Martin Gill (OCDEA) **Assessor Number** 1756 **Assessor Name**

2 **Opening Ref:**

Window Master: No Type Table 6x (SAP 2005) From source: Linked to: 0 master bed Wall 1 **Description:** Location name:

u-PVC Frame: Width: 1.48 m Transmittance: 0.76 Thermal break: N/A Height: 1.08 m Fraction glazed: 0.70 U-value: 2.70 W/m2K

Draught proofing: Loose seal Area: 1.60 m² Metal lintel: No Overhang depth: 0.00 m Double 0.00 m Overhang width:

Glazing Type: Argon Filled: No

16mm or more Gap:

East Orientation:

Average / Unknown Overshading:

Opening Ref: 3

Window Nο Type Master: Table 6x (SAP 2005) Linked to: From source: n **Description:** bed rear Location name: Wall 1

u-PVC 1.48 m Transmittance: 0.76 Frame: Width: N/A 0.70 Thermal break: Height: 1.08 m Fraction glazed: 2.70 W/m2K 1.60 m² U-value:

Draught proofing: Loose seal Area: Metal lintel: No Overhang depth: 0.00 m Double Overhang width: 0.00 m **Glazing Type:**

Argon Filled: Nο

Gap: 16mm or more

Orientation: West

Overshading: Average / Unknown

Opening Ref:

Type Window Master: No Table 6x (SAP 2005) Linked to: 0 From source: Wall 1 **Description:** living room Location name:

u-PVC 0.76 Frame: Width: 1.48 m Transmittance: Thermal break: N/A Height: 2.05 m 0.70 Fraction glazed: 2.70 W/m²K

Draught proofing: Loose seal $3.03 \, m^2$ Area: Overhang depth: Metal lintel: No $0.00 \, \text{m}$ **Glazing Type:** Double Overhang width: 0.00 m

Argon Filled: 16mm or more Gap:

Orientation: West

Average / Unknown Overshading:

No

Submission Reference Number:

Date Last Modified 30/03/2009

U-value:

Mr Martin Gill (OCDEA) **Assessor Number** 1756 **Assessor Name**

5 **Opening Ref:**

Window Master: No Type Table 6x (SAP 2005) From source: Linked to: 0 bath and T Wall 1 **Description:** Location name:

u-PVC Frame: Width: 1.48 m Transmittance: 0.76 Thermal break: N/A Height: 0.45 m Fraction glazed: 0.70 0.67 m² U-value: 2.70 W/m2K

Draught proofing: Loose seal Area: Metal lintel: No Overhang depth: 0.00 m Double 0.00 m Overhang width:

Glazing Type: Argon Filled: No

16mm or more Gap:

East Orientation:

Average / Unknown Overshading:

Opening Ref: 6

> Window Nο Type Master: Table 6x (SAP 2005) Linked to: From source: n **Description:** living room Location name: Wall 1

u-PVC 1.48 m Transmittance: 0.76 Frame: Width: 0.70 Thermal break: N/A Height: 2.05 m Fraction glazed: 2.70 W/m2K

Draught proofing: Loose seal Area: 3.03 m² Metal lintel: No Overhang depth: 0.00 m Double Overhang width: 0.00 m

Glazing Type: Argon Filled: Nο

Gap: 16mm or more

Orientation: West

Overshading: Average / Unknown

7 **Opening Ref:**

Type Master: No Table 6x (SAP 2005) Linked to: 0 From source: front door Wall 1 **Description:** Location name:

Wood 0.85 Frame: Width: 0.87 m Transmittance: Thermal break: N/A Height: 1.98 m 0.40 Fraction glazed: Draught proofing: Loose seal 3.90 W/m2K $1.72 \, m^2$ Area: U-value:

Overhang depth:

Overhang width:

-1.00 m

-1.00 m

No Metal lintel: **Glazing Type:** Single Orientation: East

More than average Overshading:

Submission Reference Number:

Date Last Modified 30/03/2009

0.00 m

0.00 m

Assessor Name Mr Martin Gill (OCDEA) Assessor Number 1756

Opening Ref: 8

TypeWindowMaster:NoFrom source:Table 6x (SAP 2005)Linked to:0Description:hallLocation name:Wall 1

Frame: Wood Width: 0.64 m Transmittance: 0.85
Thermal break: N/A Height: 1.98 m Fraction glazed: 0.40

Draught proofing: Unopenable **Area:** 1.27 m² **U-value:** 4.80 W/m²K

Metal lintel:NoOverhang depth:Glazing Type:SingleOverhang width:

Orientation: East

Overshading: Average / Unknown

Thermal bridging:

Detailed thermal bridges calculation: No

'y' value type: 0.15 default 'y' value used

User defined 'y' value: N/A
'y' value calculation method: N/A

Air permeability:

Air permeability entered: Yes Seek exemption for <3 dwellings: No

Design air permeability rate: 7.28 m³/hm² (@50Pa)

As built air permeability rate: 7.28 m³/hm² (@50Pa) As Tested

As built reference: Bindt Cert 17265
As built test date: On or after 1 Nov 2007
Mechanical ventilation: Not present (natural)

Number of fireplaces: 0
Number of flues: 0
Number of flueless gas fires: 0
Number of fans and vents: 2
Air Conditioning present?: No

Main heating:

Electricity Tariff: Standard Main heating type: Boiler

Efficiency from: Boiler efficiency database

Boiler Efficiency Database details:

Index: 008440

Manufacturer: Baxi Potterton

Model: Performa

Boiler type: Combi

Fuel: Mains gas

Fan flue: Yes

Main heating system: 1998 or later - Combi, auto ignition
Controls: Programmer, room thermostat and TRV's

Submission Reference Number:

NB-NES-00001756-09033023051200

URN: ED1029 V: 3
Plan Assessor V: 4.2.28
SAP Worksheet (Version - 9.81)

Date Last Modified 30/03/2009

Assessor Name Mr Martin Gill (OCDEA) Assessor Number 1756

Emitter: Radiators
Boiler Interlock: Yes
Compensator: N/A
Pump in heated space: Yes
Main heating efficiency: 78.60 %

Community heating CHP:

Is there CHP: N/A

Secondary heating system:

Secondary heating present: No Open flue or chimney present: No

A secondary heating system is defaulted by the software for calculating the DER, in accordance with the building regulations.

Water heating:

Water heating type: From main

Cylinder within dwelling: N/A

Water heating fuel:
Water heating separately timed:
Mains gas
N/A

Solar water heating:

Solar water heating:

Photovoltaics (PV):

Photovoltaics: Yes Installed peak power (kWp): 3.87
Collector orientation: East/V

Collector orientation: East/West
Collector tilt: 30 degrees

Overshading: None or very little < 20%

Wind turbines:

Wind turbines: No

Additional allowable generation:

Is there additional Electricity generation: No

Low energy lighting:

Low energy lights: 100.00 % of fixed lighting outlets

(30% assumed for DER calculation)

External lighting:

Assess external lighting: No Fiitings only accept > 40 lumens per circuit watt: N/A Lamps not > 150W, off in day and at night when not needed: N/A

Submission Reference Number:

Date Last Modified 30/03/2009

Assessor Name Mr Martin Gill (OCDEA) Assessor Number 1756

Summer overheating:

Summer overheating included: Yes Cross ventilation on most floors: Yes

Window ventilation: Fully open half the time

Internal partition construction: Plasterboard, timber/steel frame Separating (party) wall construction: Plasterboard, timber/steel frame

Curtains closed in daylight hours: No Fraction curtains closed: N/A Blind/curtain type: N/A

Separated heated conservatory:

Heated conservatory present: No

Special features:

Special features included: No

Submission Reference Number:

NB-NES-00001756-09033023051200

Page 6 of 6

URN: ED1029 V: 3 Plan Assessor V: 4.2.28 SAP Worksheet (Version - 9.81)