

sensors and infrastructure cheap 'n' easy Damon Hart-Davis

w opentrv.org.uk

t @opentrv

e opentrv@opentrv.org.uk

£1000

context

CCS101 Datasheet CC-000064-DB

Electrical Characteristics

Parameters	Conditions	Typical Value	Units
Operating Temperature		600	°C
Thermal Rise Time (t ₉₀)		15 ± 5	ms
Thermal Fall Time (t ₁₀)		30 ± 5	ms
Power Consumption (P _H)	DC @ 600 °C	72 ± 7	mW
Heater Voltage (V _H)		2.4 ± 0.3	V
Heater Current (IH)		30 ± 4	mA
Ambient Resistance (R ₀)		40 ± 10	Ω
Heater Resistance (R)		80 ± 20	Ω
Heated Area		0.05	mm²
Emissivity	2 -14 µm wavelength	0.7	10100
Frequency at 50% Modulation		38	Hz
Lifetime	600 °C @ 50% duty cycle	>5	years

$$\label{eq:Note:1} \begin{split} & \textbf{Note:} \\ & 1. \quad \text{R = (R0-RT)[1 + } \alpha (T-T0) + \beta (T-T0)^2] + \text{RT : } T0 = 25^{\text{NC}}. \\ & \text{RT (Track Resistance) = } 12\Omega \pm 0.5\Omega \textcircled{@ } 25^{\text{NC}}; \alpha = 2.05 \times 10^3 \text{ K}^3; \beta = 0.3 \times 10^6 \text{ K}^2. \end{split}$$

Infrared Source Performance

The contents of this document are subject to change without notice. Obefore ordering or considering the use of CCS devices where failure where extremely high levels of reliability are demanded. CCS will not inherently a certain rate of failure, it is therefore necessary to protect

© Cambridge CMOS Sensors Ltd, Dea

TEXAS INSTRUMENTS

Figure 12. Two-Wire Timing Diagram for Read Word Format

Figure 13. Timing Diagram for SMBus ALERT

hardware is hard

insecure

closed

unfamiliar

complex

energydeck

energydeck

Lehman Nomura Lloyds Unicredit Google

credibility

Institute for Communication Systems 5G Innovation Centre

Department of Energy & Climate Change

hardware for IoT doesn't need to be hard

footfall for bus shelters and buildings

sensors as a **commodity**

the **glue** that binds the clusters **together**

hardware for IoT doesn't need to be hard

Damon Hart-Davis Mark Hill Bruno Girin

energydeck

footfall for bus shelters and buildings

sensors as a commodity

the **glue** that binds the clusters **together**